Escherichia coli W3110
Synonyms
Escherichia coli K12 W3110
Ancestors
Derived strains
- Escherichia coli WL3110
- Escherichia coli KW
- Escherichia coli SDU2
- Escherichia coli FB-01
- Escherichia coli DY330
- Escherichia coli GPT100
- Escherichia coli W3110/pSV-aroFfbr-trpEfbrD
- Escherichia coli W3110/pSV01
- Escherichia coli W3110/pSV02
- Escherichia coli TRP1
- Escherichia coli AE1
- Escherichia coli TRP
- Escherichia coli NT1259
- Escherichia coli JB102
- Escherichia coli W3110-ZDrr
- Escherichia coli BCTRP
- Escherichia coli Trp01
- Escherichia coli T8
- Escherichia coli LY74
- Escherichia coli SZ61
- Escherichia coli TC36
- Escherichia coli W3110G
- Escherichia coli ES
- Escherichia coli UR1
- Escherichia coli HW1
- Escherichia coli W3110 ΔmetJ
- Escherichia coli CWF0
- Escherichia coli CWF1
- Escherichia coli WGS-3
- Escherichia coli WGS-10
- Escherichia coli W3110/p10499A
- Escherichia coli W3110/p104ColiPck
- Escherichia coli W3110/p104ManPck
- Escherichia coli F0201
- Escherichia coli ATCC 25947
- Escherichia coli W3110 trpD9923
- Escherichia coli WygaZH
- Escherichia coli W-H4
- Escherichia coli HS
- Escherichia coli HX1
- Escherichia coli TS
- Escherichia coli TS-0
- Escherichia coli VHY01
- Escherichia coli VHY02
- Escherichia coli LEU01
- Escherichia coli LEU02
- Escherichia coli W3110 ΔlacI
- Escherichia coli 5HV1
- Escherichia coli 5HV2
- Escherichia coli 5HV3
- Escherichia coli 5HV7
- Escherichia coli 5HV8
- Escherichia coli 5HV9
- Escherichia coli LJL1
- Escherichia coli HM1
- Escherichia coli HM6
- Escherichia coli HTP01
- Escherichia coli AUD1
- Escherichia coli W-125
- Escherichia coli W3110 pCys
- Escherichia coli W3110 pCysK
- Escherichia coli W3110 pCysM
- Escherichia coli W3110-pLH03
- Escherichia coli W3110/pKP291
- Escherichia coli W3110/pACYC184-LH
- Escherichia coli W3110Δ299
- Escherichia coli W3110 yfiK
- Escherichia coli W3110-DK
- Escherichia coli W3110/pKP290
- Escherichia coli W3110/pHCEX
- Escherichia coli W3110/pG2
- Escherichia coli W3110/pG7
- Escherichia coli HD-1
- Escherichia coli VAL3
- Escherichia coli W3110MT
- Escherichia coli DA-1
- Escherichia coli Mut
- Escherichia coli W3110 (DE3)
- Escherichia coli CWF4N
- Escherichia coli W3110/pTac15kPC
- Escherichia coli W3110/pTac15kPE
- Escherichia coli AC
- Escherichia coli S03
- Escherichia coli EPA1
- Escherichia coli HIS1-1
- Escherichia coli VH33
- Escherichia coli W3110ΔtyrR
- Escherichia coli W3110_TIR
- Escherichia coli JHL08
Genotype with respect to parental
F-, λ-, rph-1, IN (rrnD, rrnE)
Genotype with respect to wild type
F+ (λ) | λ- | inv(rrnD-rrnE) | F-, λ-, rph-1, IN (rrnD, rrnE)Bars (|) indicate differences between strains.
Production
| Metabolites | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
|---|---|---|---|---|---|---|---|
| (R)-lactate | Substrate yield | 1.34 mol/mol of substrate | 72 h | Batch | [137] | ||
| succinate | Substrate yield | 0.09 mol/mol of substrate | 72 h | Batch | [137] | ||
| formate | Substrate yield | 0.43 mol/mol of substrate | 72 h | Batch | [137] | ||
| acetate | Substrate yield | 0.4 mol/mol of substrate | 72 h | Batch | [137] | ||
| ethanol | Substrate yield | 0.18 mol/mol of substrate | 72 h | Batch | [137] | ||
| L-tryptophan | Titer | 0.0 g/L | Flask | [135] | |||
| succinate | Titer | 2.43 mM | 24 h | Flask | [186] | ||
| (R)-lactate | Titer | 10.62 mM | 24 h | Flask | [186] | ||
| formate | Titer | 88.03 mM | 24 h | Flask | [186] | ||
| acetate | Titer | 40.1 mM | 24 h | Flask | [186] | ||
| ethanol | Titer | 5.77 mM | 24 h | Flask | [186] | ||
| uridine | Titer | 0.0 g/L | 24 h | Flask | [202] | ||
| L-methionine | Titer | 0.0 g/L | Flask | [204] | |||
| pyruvate | Titer | 20.8 mM | 4.13 g/L | Batch | [185] | ||
| acetate | Titer | 180.0 mM | 4.13 g/L | Batch | [185] | ||
| 2-oxoglutarate | Titer | 8.3 mM | 4.13 g/L | Batch | [185] | ||
| succinate | Titer | 13.7 mM | 4.13 g/L | Batch | [185] | ||
| fumarate | Titer | 0.9 mM | 4.13 g/L | Batch | [185] | ||
| pyruvate | Titer | 5.54 g/L | 2.23 g/L | Flask | [217] | ||
| (R)-lactate | Titer | 6.34 g/L | 2.23 g/L | Flask | [217] | ||
| acetate | Titer | 4.72 g/L | 2.23 g/L | Flask | [217] | ||
| formate | Titer | 2.34 g/L | 2.23 g/L | Flask | [217] | ||
| ethanol | Titer | 1.43 g/L | 2.23 g/L | Flask | [217] | ||
| shikimate | Titer | 1.13 mg/L | 3.42 g/L | 27 h | Flask | [218] | |
| acetate | Titer | 5.89 g/L | 3.42 g/L | 27 h | Flask | [218] | |
| L-quinate | Titer | 0.0 mg/L | 3.42 g/L | 27 h | Flask | [218] | |
| L-homoserine | Titer | 0.0 mM * | 12.28 OD600* | Flask | [238] | ||
| hypoxanthine | Titer | 0.0 g/L * | 45.98 OD600* | Flask | [256] | ||
| L-valine | Titer | 0.0 g/L * | 45.56 OD600* | Flask | [263] | ||
| L-leucine | Titer | 0.0 g/L * | 44.0 OD600* | Flask | [265] | ||
| L-leucine | Substrate yield | 0.0 g/g of sustrate * | 44.0 OD600* | Flask | [265] | ||
| L-homoserine | Titer | 0.0 g/L | 44 h | Flask | [271] | ||
| L-homoserine | Titer | 0.0 g/L | Flask | [272] | |||
| 2-phenylethylamine | Titer | 0.0 g/L | Flask | [276] |
* Inferred from plots using RetroPlot.
Heterologous.
Target metabolites are shown in bold, while non-bold metabolites represent intermediates or potential byproducts.
References
- Zhi‐Gang Qian, Xiao‐Xia Xia & Sang Yup Lee (2010). Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnology & Bioengineering.
- Huimin Liu, Junhua Kang, Qingsheng Qi & Guanjun Chen (2010). Production of Lactate in Escherichia coli by Redox Regulation Genetically and Physiologically. Applied Biochemistry and Biotechnology.
- Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim & Han Min Woo (2010). In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production▿ †. Applied and Environmental Microbiology.
- Pengfei Gu, Fan Yang, Junhua Kang, Qian Wang & Qingsheng Qi (2012). One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microbial Cell Factories.
- Patrick Daegelen, F. William Studier, Richard E. Lenski, Susan Cure & Jihyun F. Kim (2009). Tracing Ancestors and Relatives of Escherichia coli B, and the Derivation of B Strains REL606 and BL21(DE3). Journal of Molecular Biology.
- Lihong Du, Zhen Zhang, Qingyang Xu & Ning Chen (2019). Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered.
- T. B. Causey, K. T. Shanmugam, L. P. Yomano & L. O. Ingram (2004). Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America.
- Sang Jun Lee, Dong-Yup Lee, Tae Yong Kim, Byung Hun Kim, Jinwon Lee & Sang Yup Lee (2005). Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation. Applied and Environmental Microbiology.
- Kwang Ho Lee, Jin Hwan Park, Tae Yong Kim, Hyun Uk Kim & Sang Yup Lee (2007). Systems metabolic engineering of Escherichia coli for L‐threonine production. Molecular Systems Biology.
- Wang, C., Wu, J., Shi, B. et al. Improving l-serine formation by Escherichia coli by reduced uptake of produced l-serine. Microb Cell Fact 19, 66 (2020).
- Zhi‐Gang Qian, Xiao‐Xia Xia & Sang Yup Lee (2009). Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnology & Bioengineering.
- Heyun Wu, Yanjun Li, Qian Ma, Qiang Li, Zifan Jia, Bo Yang, Qingyang Xu, Xiaoguang Fan, Chenglin Zhang, Ning Chen & Xixian Xie (2018). Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering.
- Heyun Wu, Daoguang Tian, Xiaoguang Fan, Weiming Fan, Yue Zhang, Shuai Jiang, Chenhui Wen, Qian Ma, Ning Chen & Xixian Xie (2020). Highly Efficient Production of l‑Histidine from Glucose by Metabolically Engineered Escherichia coli. ACS Synthetic Biology.
- Jian‐Feng Huang, Zhi‐Qiang Liu, Li‐Qun Jin, Xiao‐Ling Tang, Zhen‐Yang Shen, Huan‐Huan Yin & Yu‐Guo Zheng (2016). Metabolic engineering of Escherichia coli for microbial production of L‐methionine. Biotechnology & Bioengineering.
- Chan Woo Song, Dong In Kim, Sol Choi, Jae Won Jang & Sang Yup Lee (2013). Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology & Bioengineering.
- Dong-Eun Chang, Heung-Chae Jung, Joon-Shick Rhee & Jae-Gu Pan (1999). Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1. Applied and Environmental Microbiology.
- Soo Yun Moon, Soon Ho Hong, Tae Yong Kim & Sang Yup Lee (2008). Metabolic engineering of Escherichia coli for the production of malic acid. Biochemical Engineering Journal.
- Xiaoxiang Dong, Xiulai Chen, Yuanyuan Qian, Yuancai Wang, Li Wang, Weihua Qiao & Liming Liu (2016). Metabolic engineering of Escherichia coli W3110 to produce L‐malate. Biotechnology & Bioengineering.
- Jin Hwan Park, Jae Eun Oh, Kwang Ho Lee, Ji Young Kim & Sang Yup Lee (2012). Rational Design of Escherichia coli for l‑Isoleucine Production. ACS Synthetic Biology.
- Vo, Toan Minh & Park, Sunghoon. Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metabolic Engineering. 2022, 73, 104-113.
-
Niu, Kun; Zheng, Rui; Zhang, Miao; Chen, Mao‐Qin; Kong, Yi‐Ming; Liu, Zhi‐Qiang & Zheng, Yu‐Guo. Adjustment of the main biosynthesis modules to enhance the production of
l ‐homoserine in Escherichia coli W3110. Biotechnology and Bioengineering. 2024.
- Siyu Zhao, Tangen Shi, Liangwen Li, Zhichao Chen, Changgeng Li, Zichen Yu, Pengjie Sun & Qingyang Xu (2024). The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine. Microbial Cell Factories.
- Hou, Minglei; Gao, Shengqi; Wu, Jing; Chen, Sheng & Zhang, Kang. Metabolic engineering of Escherichia coli to enhance L-tryptophan biosynthesis. Systems Microbiology and Biomanufacturing. 2025.
- Yanan Hao, Qian Ma, Xiaoqian Liu, Xiaoguang Fan, Jiaxuan Men, Heyun Wu, Shuai Jiang, Daoguang Tian, Bo Xiong & Xixian Xie (2020). High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metabolic Engineering.
- Hao, Yanan; Pan, Xuewei; Li, Guomin; You, Jiajia; Zhang, Hengwei; Yan, Sihan; Xu, Meijuan & Rao, Zhiming. Construction of a plasmid-free l-leucine overproducing Escherichia coli strain through reprogramming of the metabolic flux. Biotechnology for Biofuels and Bioproducts. 2023, 16(1).
- Chen, Chen; Wang, Tiantian; Ye, Pan & Li, Naiqiang. Metabolic engineering of Escherichia coli for the efficient production of 5-hydroxyvaleric acid. Process Biochemistry. 2023, 130, 625-633.
- Min Liu, Jiali Lou, Jiali Gu, Xiao-Mei Lyu, Feng-Qing Wang & Dong-Zhi Wei (2020). Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways. Journal of Biotechnology.
- Li, Hua; Wang, Baoshi; Zhu, Linghuan; Cheng, Shi; Li, Youran; Zhang, Liang; Ding, Zhong Yang; Gu, Zheng Hua & Shi, Gui Yang. Metabolic engineering of Escherichia coli W3110 for L-homoserine production. Process Biochemistry. 2016, 51(12), 1973-1983.
- Zhen Zhang, Zichen Yu, Jinduo Wang, Yifa Yu, Lanxiao Li, Pengjie Sun, Xiaoguang Fan & Qingyang Xu (2022). Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose. Microbial Cell Factories.
- Xu, Daqing & Zhang, Lirong. Pathway Engineering for Phenethylamine Production in Escherichia coli. Journal of Agricultural and Food Chemistry. 2020, 68(21), 5917-5926.
- Caballero Cerbon, Daniel Alejandro; Widmann, Jeremias & Weuster-Botz, Dirk. Metabolic control analysis enabled the improvement of the L-cysteine production process with Escherichia coli. Applied Microbiology and Biotechnology. 2024, 108(1).
- Isabel Franke, Armin Resch, Tobias Daßler, Thomas Maier & August Böck (2003). YfiK from Escherichia coli Promotes Export of O-Acetylserine and Cysteine. Journal of Bacteriology.
- Yanan Hao, Xuewei Pan, Rufan Xing, Jiajia You, Mengkai Hu, Zhifei Liu, Xiangfei Li, Meijuan Xu & Zhiming Rao (2022). High-level production of L-valine in Escherichia coli using multi-modular engineering. Bioresource Technology.
- Xu Li, Yanghao Liu, Ling Ma, Wenjing Jiang, Tangen Shi, Lanxiao Li, Changgeng Li, Zhichao Chen, Xiaoguang Fan & Qingyang Xu (2025). Metabolic engineering of Escherichia coli for high-yield dopamine production via optimized fermentation strategies. Applied and Environmental Microbiology.
- Chan Woo Song, Joungmin Lee, Yoo-Sung Ko & Sang Yup Lee (2015). Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metabolic Engineering.
- Cen, Xuecong; Liu, Yanjuan; Zhu, Fanghuan; Liu, Dehua & Chen, Zhen. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Metabolic Engineering. 2022, 74, 168-177.
- Ahn, Da-Hee; Ko, Yoo-Sung; Prabowo, Cindy Pricilia Surya & Lee, Sang Yup. Microbial production of propionic acid through a novel β-alanine route. Metabolic Engineering. 2026, 93, 219-231.
- Li, Xiaoxi; Yu, Wenwen; Guo, Baoyuan; Lang, Xutao; Xu, Xianhao; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Lv, Xueqin & Liu, Long. Metabolic engineering of Escherichia coli for biosynthesis of inosinic acid. Systems Microbiology and Biomanufacturing. 2025, 5(4), 1609-1621.
- Muñoz, Ana Joyce; Hernández-Chávez, Georgina; de Anda, Ramon; Martínez, Alfredo; Bolívar, Francisco & Gosset, Guillermo. Metabolic engineering of Escherichia coli for improving l-3,4-dihydroxyphenylalanine (l-DOPA) synthesis from glucose. Journal of Industrial Microbiology & Biotechnology. 2011, 38(11), 1845-1852.